Opportunities and Limits of Remote
Timing Attacks

SCOTT A. CROSBY, DAN S. WALLACH and RUDOLF H. RIEDI
Rice University

Many algorithms can take a variable amount of time to complete depending on the data being
processed. These timing differences can sometimes disclose confidential information. Indeed, re-
searchers have been able to reconstruct an RSA private key purely by querying an SSL. Web server
and timing the results. Our work analyzes the limits of attacks based on accurately measuring
network response times and jitter over a local network and across the Internet. We present the
design of filters to significantly reduce the effects of jitter, allowing an attacker to measure events
with 15-100us accuracy across the Internet, and as good as 100ns over a local network. Notably,
security-related algorithms on Web servers and other network servers need to be carefully engi-
neered to avoid timing channel leaks at the accuracy demonstrated in this article.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security; C.2.5 [Computer-Communication Networks]: Local and Wide-Area Networks—
Internet

General Terms: Security, Measurement
Additional Key Words and Phrases: Information leakage, jitter, timing attacks

ACM Reference Format:

Crosby, S. A., Wallach, D. S., and Riedi, R. H. 2009. Opportunities and limits of remote timing
attacks. ACM Trans. Inf. Syst. Secur. 12, 3, Article 17 (January 2009), 29 pages.

DOI = 10.1145/1455526.1455530. http:/doi.acm.org/10.1145/1455526.1455530.

1. INTRODUCTION

Security researchers have studied a number of remote timing attacks, princi-
pally against cryptographic algorithms. If an attacker can precisely time cryp-
tographic operations, the attacker may be able to solve for the cryptographic
key. There has been significant interest in these attacks. Brumley and Boneh

This research was supported by NSF grants #CNS-0509297 and ANI-0338856 as well as generous
support from Microsoft and Schlumberger. The authors wish to thank Alan Cox, Eugene Ng, Scott
Rixner and the anonymous referees for their helpful comments.

Authors’ address: S. A. Crosby, D. S. Wallach, and R. H. Riedi, Department of Computer Science,
Rice University, 6100 Main St. MS 32, Houston, TX 77005.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

© 2009 ACM 1094-9224/2009/01-ART17 $5.00 DOI: 10.1145/1455526.1455530.
http://doi.acm.org/10.1145/1455526.1455530.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17

17: 2 . S. A. Crosby et al.

[2004] showed that such attacks were practical, that is, an attacker could mea-
sure the response-time variances of a secure Web server with carefully chosen
input and, after collecting enough samples, could derive that server’s RSA
private key. Likewise, it has been shown that an IMAP password could be
extracted from a TLS/SSL channel across a network consisting of two switches
and a firewall by measuring a 2ms difference in response time [Canvel et al.
2003].

Brumley and Boneh based their attack on roughly 1.4 million queries which
they found to be effective on a local area network yet ineffective across the
Internet to derive the server’s private 1024-bit RSA key. Clearly, additional
network hops will increase the latency for packets to travel from one host to
another. To an attacker trying to mount a timing attack, latency differences are
irrelevant because the attacker is only interested in measuring the differences
in latency across measured events. However, additional network hops may
also add jitter (i.e., random noise) to the measured latency. An attacker’s goal
is to make multiple timing measurements and hopefully smooth out the jitter
to recover the actual time difference.

Timing attacks have broad relevance beyond protecting cryptographic keys.
Consider algorithmic complexity attacks [Crosby and Wallach 2003], where
an attacker tries to induce algorithmic worst-case behavior in a program by
sending carefully-chosen inputs that might, for example, cause every insert
into a hash table to collide, causing expected O(1) operations to consume their
worst-case O(IN) running-time. One proposed solution to such attacks is to
hide important details about the parameters used by internal algorithms. For
example, several systems have replaced a deterministic hash function with a
keyed but noncryptographic hash function (e.g., universal hashing [Carter and
Wegman 1979] or Jenkin’s hash [Jenkins 1995]). If an attacker can measure
a server’s response time with enough accuracy to determine if a collision oc-
curred, then the attacker might be able to derive the key.

Timing attacks against some algorithms will require more precision than
others. This article aims to quantify the precision that an attacker might hope
to achieve in discriminating between two events, on a remote computer, that
take slightly different amounts of time to run. This article will present the
results of extensive measurements both on our local network and across the
Internet.

Section 2 describes our attacker model and summarizes our results.
Section 3 describes our experimental infrastructure and how we collected
measurements. Section 4 describes our network model. Section 5 provides
a statistical analysis of our observed network jitter. Section 6 consists of our
simulation-driven study of how well an attacker might be able to perform a
remote timing attack using statistical hypothesis testing. Section 7 presents
related work. We present our conclusions in Section 8.

2. ATTACK MODEL AND RESULTS

We consider a simplified situation where the attacker can transmit two differ-
ent requests to the target server that either take the same or different time to

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 3

complete as a function of the server’s secret. We assume that knowing whether
or not they take the same time will divulge something about the secret. (We as-
sume the attacker knows everything else about the target machine, including
its hardware and software configuration. The attacker only lacks knowledge of
the internal secret.) The attack then reduces to inferring such a difference in
computing time with high reliability. Our model is powerful enough to repre-
sent the Brumley and Boneh [2004] OpenSSL attack.

To be more precise, a query is transmitted to the target machine, upon which
the target performs some task which requires a processing time which the at-
tacker would like to infer. However, the attacker can only measure the response
time, that is, the time from when the query is transmitted to when the reply is
received.

Our goal is to identify the smallest difference between two processing times
that can be reliably detected by an attacker given a reasonable number of mea-
surements. Of course, the resolution with which an attacker can observe these
differences will be a function of how many samples the attacker takes, how
much random perturbation, called jitter, is introduced in the response time by
the network and how effective the attacker can be at filtering that jitter.

Unfiltered jitter is a measure of resolution based on statistical techniques
and is suggestive of the timing difference that is measurable. We also measure
resolution empirically by simulating an attack and identifying the minimum
distinguishable timing difference. We now summarize our research results
with forward references to the subsections where they are discussed.

Does network latency follow a Gaussian distribution? No. The distribution
of response time is a highly skewed distribution. (See Section 5.1.)

How is unfiltered jitter measured? Unfiltered jitter estimates the amount
of residual noise which limits the resolution of a remote timing attack. Mea-
surements are filtered to a single value that is supposed to be correlated with
the remote processing time. As we know the actual processing time, we can
check the strength of the correlation. Good filters should have high correla-
tion. Unfiltered jitter measures the lack of correlation. (See equation 10 in
Section 5.4.)

Isn’t mean (or median) the best way to filter measurements? If the response
times were distributed in a Gaussian fashion, then mean or median would be
excellent filters. With the non-Gaussian distributions we see in practice, low-
percentile filters tend to significantly outperform the mean or median. (See
Sections 5.1 and 5.5 for details.)

Then surely the minimum response time should be an excellent choice. Con-
trary to expectations, the minimum response time is not the least noisy signal.
Low percentile filters exhibit significantly less noise than the minimum re-
sponse times. (See Section 5.5.)

Is there a correlation between unfiltered jitter and network latency or hop-
count? We observed no significant correlation between unfiltered jitter and
either latency or the number of network hops. (See Section 5.6.)

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 4 . S. A. Crosby et al.

Does the CPU of a machine affect unfiltered jitter? Yes, we found that our
Pentium 4 measurement host introduced artifacts. For processing times be-
tween 100ns and 80us, 40 percent of the measurements had a constant 180us
response time. (See Section 5.7.)

Does the network card affect unfiltered jitter? Yes, we found that our Intel
Gigabit Ethernet card had 10 to 30 times more unfiltered jitter than our
generic onboard Ethernet adapter, depending on whether interrupt coalescing
was enabled. (See Section 5.8.)

What is the best statistical discrimination test? Our best test for distinguish-
ing whether two sets of messages had the same response time compared the
results of two low-percentile filters. (See Section 6.4.)

At what empirical resolution can an attacker time a remote host? The res-
olution an attacker can time a remote host depends on how many measure-
ments they can collect. Our simulated attacker using statistical hypothesis
testing was able to reliably distinguish a processing time differences as low as
200ns and 30us with 1,000 measurements on the LAN and WAN respectively
with. (See Section 6.)

How much extra noise is introduced by application load? With 1,000 sam-
ples, the addition of application load from Apache introduces only 1us of jitter,
much less than the 20us WAN jitter. (See Section 6.5.)

3. EXPERIMENTAL SETUP

We ran tens of millions of timing experiments, both in our lab and over the
Internet. Our system implemented a simple UDP ping-pong protocol where,
for each measurement, a client sends a message to the server containing the
specific amount of time the server should pause before replying. The server
waits for the requested amount of time and then responds.

Upon receiving the response, the client logs the processing time requested of
the server and the observed response time, then waits a random delay before
sending the next request. This delay, averaging 20ms, avoids synchronization
artifacts between the client and server. Furthermore, each client performed
its trials in a random order. If no response is received within one second, the
client assumes that a packet was dropped and repeats the measurement.

In all of our datasets the server machine was dedicated to the task, while we
ran clients as background tasks on other machines. Clients would only make
one request at a time, allowing them to run without disturbing the machines’
users. In effect, we have busy and idle clients querying an idle server instead of
mostly-idle clients querying a busy server, as we would expect when a server is
under attack. We show measurements of loaded servers and discuss this issue
further in Section 6.6.

3.1 Clock Calibration

We perform our measurement and delay timings by using the CPU cycle
counter. This is the most precise time-source we have available in the system,

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17:5

Table I. Dataset Statistics

#Hosts #Hosts Total
Dataset | Starting Surviving | #Trials # Samples | Duration
L 8 8 9.0M 27k 1 day
Wu 75 51 112.5M 40k 8 days
Wg 103 37 85.6M 30k 6 days
We 136 91 68.4M 13.5k 6 days
Wp 124 3 179.6M 68k 14 days

although nondeterminism in CPU behavior reduces the resolution of the clock.
When we are simulating processing delays, we read the clock-cycle counter in a
busy-loop without a synchronizing instruction. When measuring the response
time, we read the cycle counter before having the kernel send the request and
right after the kernel returns with the reply message. Beyond this, we rely on
our filtering strategy to yield additional measurement accuracy.

Cycle counters count in cycles, which we must convert to nanoseconds, re-
quiring our experimental harness to estimate the clock frequency of each ma-
chine. Rather than trying to tightly synchronize the clocks of these machines,
perhaps with NTP [Mills 1991, 1992], we perform a one-second calibration
of the cycle counter against the system clock to give an approximate solution,
within one percent accuracy. Our network model includes a correction for clock
skew. Each machine measures time independently, in nanoseconds, and we
reconcile the differences in post-processing. We determine the clock skew by
the slope of a least-squares linear fit of the delays requested with the delays
measured. This process is described further in Section 5.4.

3.2 Collected Datasets

We collected five primary datasets. One dataset was collected over a LAN and
the other four datasets were collected over the Internet. In each dataset, we
measured the same M = 46 distinct processing times on the server ranging
from 100ns to 8ms. Table I summarizes these measurements, including the
number of hosts that were involved at the start of the experiment, the number
of hosts that were left when we finished the experiment, the total number of
measurements in the dataset, and the maximum number of samples per host
per processing time we collected.

Dataset L consists of 8 clients on our LAN. For each processing time, we
collected 27,000 samples. Datasets W4, Wg, W¢, and Wp were collected over
the Internet, ranging from 13,000 to 68,000 measures per host per processing
time. Dataset W4 was collected in the spring of 2004 and datasets Wg-Wp
were collected in the spring of 2005.

To achieve a broad sampling of Internet hosts, we used PlanetLab, an
open, globally distributed platform for developing, deploying and accessing
planetary-scale network services [Chun et al. 2003]. Unfortunately, Planet-
Lab hosts are not very reliable and many hosts failed during the experiment.
We are unable to restart a failed host because the clock calibration would not
match. These host failures were particularly apparent in datasets Wg-Wp.

We would have preferred to use dataset W, because PlanetLab hosts were
much more reliable and less overloaded when it was collected. Unfortunately, a

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 6 . S. A. Crosby et al.

concurrency bug in our earlier data collection system corrupted about .002 per-
cent of the measurements in dataset W4 and about .0003 percent in dataset L.
We fixed this problem for subsequent measurements, and our post-processing
removed all suspicious samples we could identify. Nonetheless, we will present
results for each dataset.

4. NETWORK MODEL

It would be impossible to isolate and measure every possible contribution to
network latency and jitter. Between an attacker’s machine and the target ma-
chine, there may be any number of network bridges, hubs, switches, firewalls,
and routers. Each of these may delay packets, drop packets, or suffer internal
contention. Furthermore, if packets are arriving faster than they can be for-
warded, a router will attempt to queue the packets and send them out later. As
the load varies, so will the latency and jitter accumulated by packets as they
pass through the network device.

In addition, the end-hosts will introduce their own jitter as a result of
application load, virtual memory pressure, and network packet processing.
Whereas the attacker may be able to dedicate a computer to the sole purpose
of time measurement, and thus reduce the attacker’s contribution to jitter, the
target machine is likely to be running a general-purpose operating system and
supporting a nontrivial workload.

We use an abstract model of the server and the network. The server is
assumed to run at least two different tasks which have different processing
times and all requests for the same task have the same processing time. We
model the latency of a round-trip communication channel between one pair of
hosts as

responseTime = a - processingTime + propagationTime + jitter (D)
with the following five assumptions:

(1) responseTime is the measured round trip time on the network.

(2) a accommodates clock skew and is constant over all requests for all tasks.
This is estimated in our analysis independently for each host.

(3) processingTime is constant for all requests for the same task. In our
dataset, this corresponds to the time the remote hosts delays before send-
ing a reply to a ping-pong.

(4) propagationTime is constant over all requests, for all tasks. This is the
“average latency” and is estimated in our analysis independently for each
host.

(5) jitter is the jitter term and is identically and independently distributed for
all requests and tasks.

Thus, the jitter term absorbs all randomness introduced by network conditions,
load on the target machine and any other source.

More formally, the M different known processing times are denoted by
t[1], ..., {M]. The true, but unknown statistical distribution of response times
to a query m with a processing time of #[m] is denoted by R[m]. Thus, for each

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 7

host pair and for each query m, rilm]...rylm] denote the IV collected measure-
ments which may also be thought of as samples taken from R[m]. Our channel
model (1) can be restated more formally as:

Vmetr..my Tnlml = a-tlml+b + e,[m] (2)

where b is the propagation time, a is the correction for clock skew and ¢,[m] is
the jitter in the measurement r,[m].

By our channel model, the random variables ¢,[m] are all of the same distri-
bution and are statistically independent (for all n and m). In other words, the
distributions of R[m] for different m are identical up to a shift term and the
rnlm] constitute independent samples of these distributions.

Our model setup implicitly assumes that the application load is stationary
and that the network will introduce the same random perturbations for all
requests. This is reasonable if all response messages have the same payload
and if routing is stable over the time of the measurements. An attacker may be
limited to the number of measurements they can collect due to route changes.
Combining measurements across route changes would require detecting when
those changes occur and determining the propagation time difference between
each set of samples. (Our own work assumes that the network routes are
constant across the duration of our experiments.)

We repeat our analysis for each host pair in each dataset, treating each of
them as a separate channel with unique jitter, propagation time, clock skew,
and response time distribution.

The definition of jitter. The splitting of the response latency into the sum
of propagation and jitter is for convenience and does not affect methodology
or performance of the attack. Indeed, since only differences in response times
need to be inferred, and not actual estimates of the response times themselves,
introducing the constant shift term b = propagationTime is irrelevant. In
particular, we do not require an accurate estimate of the propagation time
as long as we use the same constant value throughout the attack. Although
strictly speaking, jitter is always an additional positive latency, we consider
propagationTime as an estimate of the propagation time plus the average
jitter, allowing jitter to represent positive and negative deviations from that
average.

The use of clock skew. An attacker need not be concerned with clock skew on
a remote host. They only need to reduce their own clock skew enough to avoid
gross errors in their measurements. Ignoring this skew creates a relative error
of (a — 1) ~ 1% for an attacker, such as the one we simulate in Section 6, which
is of no importance.

In contrast, an accurate assessment of clock skew between our client hosts
and our server host is critical in our meta-analysis of Internet jitter. Our analy-
sis of jitter depends upon tighter clock calibration than would be necessary
to perform a timing attack. If the server and client had their clock skew mis-
calibrated by one percent, this would cause a systematic bias between the
processing time we actually measured and the processing time we believed
we measured. For example, if we use the client’s clock as a baseline, with the

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 8 . S. A. Crosby et al.

16384

4096

1024 |

256

Count

50 100 150 200 250 300 350 400
Latency (milliseconds)

Fig. 1. Histogram of response times for 66k measurements of a 1ms processing time from a host
from dataset Wp.

server’s clock slightly miscalibrated to run one percent faster, the processing
time delay performed by the server, as measured by the client’s clock, would be
too low, and the reply message would be sent too early.

Allowing the least-squares fit, used to estimate unfiltered jitter, to also esti-
mate this clock skew a compensates for this bias and prevents us from radically
overestimating the jitter. For example, where our current system estimates a
100ns jitter, the lack of clock skew compensation would have yielded an 80us
estimate of jitter—three orders of magnitude higher than the real jitter.

5. STATISTICS OF THE RESPONSE TIME DISTRIBUTION

We first look at the response time distribution. We examine techniques to filter
it and estimate the unfilterable jitter.

5.1 Response Time Distribution

The distribution of jitter is not Gaussian. It is highly skewed distribution with
two modes. In Figure 1 we plot a histogram of the probability density function
(PDF) of the response times for one long-uptime host chosen from dataset Wp.
The response time is clearly asymmetric and non-Gaussian and includes two
obvious modes and an exponentially distributed tail. In Figure 2 we plot the
CDF corresponding to this host. The steep slope at about 52ms is the least
varying part of the distribution and occurs in the 5th-15th percentile response
time. Most other hosts have a similar response time distribution, with a few
unusually fast responses, and many have more than one mode.

5.2 Measurement Quantiles

We define the ith percentile (or quantile) g; of a distribution R to be the small-
est real number g¢;[m] such that P[R < g;] =i/100. The 50th percentile is the
familiar median and the 0-th percentile is the minimum response time.

The true quantile g; is unknown because it depends on the true distribution
R. We can compute an estimator §;, which is an empirical estimate of ¢; derived
from our measurements by first ranking a set of measurements into

rq) <re < .. <rqvy (3)
ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 9

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3

Probability measurement under

0.2

0.1

0

20 40 60 80 100 120 140 160
Latency (milliseconds)

Fig. 2. CDF of response times for 66k measurements of a 1ms processing time from a host from
dataset Wp.

114

40%

112 0%
. 10%
8 110 1%
2
% 108
o 0%
g 106 e,
S
g __—
=102
Q
2
§ 100
<8
§ o
['4

AN
9 4
%
0 2 4 6 8 10 12

Server processing time (microseconds)
Fig. 3. Response time percentiles as a function of processing time for a local host in dataset L.

and setting ¢; = r(in/100). The empirical quantiles ¢; are well known to be
weakly consistent under mild conditions, meaning that they converge to the
true quantile ¢; as the sample size increases.

Rather than show a set of CDF's or histograms for each processing time for
each host, which can be seen in Figures 1 or 2, we use quantiles as a graphi-
cally powerful alternative for summarizing the response time distribution for
a single host. We summarize the response time distribution with percentile
contours. The empirical percentiles ¢;[m] are plotted as a function of the sam-
pled server processing times, ¢[1], ..., {{ M1, which are indicated with dots on the
x-axis. These percentile contour summaries of the response time distribution
are easier to compare than their full histograms.

Figures 3 and 4 summarize the estimated percentiles of the response time
distributions we observed for a host in dataset L and Wp respectively. Fig-
ure 3 shows that that despite intuition to the contrary, the minimum response
time seems to be poorly correlated to the processing time. For the host in Fig-
ure 4, the minimum response time is about three times noisier than the first
percentile. (In Section 5.5 we will elaborate on which quantiles make the best
filter over all hosts.)

We can present all M = 46 response times on one plot on a log-scale if we
first estimate and subtract off the linear fit. (This process is further described
in Section 5.4.) Figure 5 shows the response time distribution for large and

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 10 . S. A. Croshy et al.

120

110

100

90

80

70 fe

60

Response time (milliseconds)

50

40 -
0 10 20 30 40 50 60 70
Server processing time (milliseconds)

Fig. 4. Response time percentiles as a function of processing time for a remote host in dataset
Wp.

1400 45000 /\\/\/\f/
40000 ki

1200 /J
1000 ™~ 35000

o LA N A M/

600

30000

30% b /TN
25000

20000

15000 byt /3

Deviation (microseconds)
Deviation (microseconds)

10000

15% .
5000 (40%:-

I
Y J o
\ g " 5%
-400 . 0 Lo%
0.1 1 10 100 1000 10000 100000 0.1 1 10 100 1000 10000 100000
Server processing time (microseconds) Server processing time (microseconds)

Fig. 5. Difference from ideal estimator as a function of processing time for the same host in
dataset Wp, showing small quantiles in the left plot and large quantiles in the right plot. Dots on
the X-axis denote measured processing times.

small quantiles for a host in dataset Wp. The variation of the median and min-
imum response times across different processing times is visually more than
the variation seen in measurements at small quantiles. The mean (not plot-
ted) is similarly noisy. Because the median and mean of our measurements are
extremely noisy, parametric inference techniques based on these very classical
statistics are unlikely to work well.

5.2.1 Variability of the empirical percentile. To study the error of this per-
centile estimation we need to consider the distribution of the estimator itself,
that is, the variability in §; when the estimation is repeated. Fixing a per-
centile i and setting k& = k(i) = [iN/100] we may write

Gilml =rg) = a-timl+ b + ggy[ml. (4)

Here, we introduced the random variable g)[m] which is the £-th ranking sam-
ple out of N independent and identically distributed samples from ¢[m]. Since
under our channel model all ¢[m] are identically distributed for different m,
emIml are identical in distribution as well and we conclude that the distribu-
tion of §;[m] and §;[m’] are identical up to the shift term a(t{[m] — t{{m']):

distr.

Gilml =" qilm'l + a(tlm] — dm’']). (6))

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 11

5.2.2 Precision of percentile estimation. It follows immediately from Equa-
tion (4) that the estimation errors ¢;[m] — ¢;[m] themselves have identical dis-
tributions, independently of m:

qilml — qilml = (a - tim]l + b + egy[m]) — (a - tm] +c) (6)
=eqplml + b—c d1s=tr. E(k)[ml] +b —c. 7
Two remarks are in order.

First, to study the variability of a percentile estimator ¢; and the estima-
tion error (6), we need a set of empirically obtained values. Typically, this is
done by repeating the same estimation procedure several times. Here, we may
exploit that the errors ¢;[m] — gi[m] obtained for the same percentile but for
different values of the response time, that is, form = 1... M are all of the same
distribution (see Equation (7)). In other words, we may consider these error
values as samples of the same distribution g3y +b —c +a- (t{{m]). In this context
we recall that b is the (unknown) propagation time, a is the clock skew, and
that ¢ depends only on i and some arbitrary baseline response time {[m*], but
not m.

Second, since we are interested in differences of processing times, and thus
in (additive) differences of the response times we observed, the additive con-
stant (b — ¢) in Equation (7) will cancel out in our inference schemes and be of
no importance.

5.2.3 Filtering our data. Because of the noise in the jitter distribution, par-
ticularly at and above the median, we apply a filter I' which reduces the set of
measurements ri[m]...ry[m] to a single number that is hopefully closely cor-
related with the processing time {[m]. A filter, foremost, is a function of the
measured response times. Filter design choices are driven mainly by the ob-
jective to minimize the variance as a measure of error which in turn impacts
the reliability of a decision procedure based on the filter. In general, we may
think of this procedure as some sort of de-noising.

While such a filter can not remove all noise, it will in help us understand
the unfilterable jitter in our measurements and estimate the resolution an
attacker may be able to measure. There are many filters we may choose. In
Section 5.4 we describe how we evaluate filters and identify the best such filter.

A first simple example of a filter would be the i-th empirical percentile:

Lg,(rilml, ... rnlm]) = §ilm] (8

Recall that the filters 'y, I'q,, I’
response times, respectively.

We tried three types of filtering strategies beyond simple percentile filtering
but they performed no better than the best percentile filter. The best filter
of each type was identified through brute force: we ran several hundred and
recorded the best instance of each type. The four types of filtering we applied
are:

7100 Pick the median, minimum, and maximum

(1) Percentile: This filter returns the xth quantile or percentile. We tried a
hundred different percentile values, varying from zero to 70 percent, with
most of the percentile values less than 10 percent.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 12 . S. A. Croshy et al.

(2) Peak: This filter identifies modes in our measurements. Samples are first
sorted, and then a window of a fixed width is moved across the sorted list.
When the difference between the maximum and minimum sample within
the window is minimized, that position of the window contains the highest
density of samples. The median measurement within the window is re-
ported as the result of the filter. We considered 25 different window widths,
ranging from one to 70 percent of the collected samples. Even in the best
case, our percentile filter outperformed the peak filter.

(3) Average range: Inspired by the filter used in Brumley and Boneh’s SSL
attack, we computed a histogram over the samples and computed the av-
erage of the samples between the ith and jth percentiles. We tested this
filter over 96 different percentile ranges. We used percentiles ranging from
zero to 40 percent; we mostly examined ranges below the 5th percentile. In
general, the best instances of this filter performed within a few percent of
the best percentile filter.

(4) Percentile smoothing: This is an attempt to improve our estimate §; of the
real percentile ¢;. Instead of computing the estimate from our measure-
ments directly, we divide the measurements into k& disjoint subsets, com-
pute a separate estimate for each subset, and then average those estimates.
We tested this filter for £ € {4, 10, 20} and for 21 different percentiles. This
filter performed slightly worse than our best percentile filter.

5.3 Filtered Measurements

Figures 3 and 4 show several percentile filters. For dataset L, virtually all of
the percentiles we plot show a smooth relationship to processing time, except
for ' = q¢, the minimum response time. For dataset Wp, it is visually clear
that the 25th percentile is much noisier than the 5th percentile. We note, for
the particular client of Figure 3, and for plotted processing times ranging from
100ns and 8ms, 39 percent of the 27,000 samples for each processing time
occurred within a 2us window, while the minimum response time was about
4us faster. The minimum response time is clearly much noisier than the other
percentiles.

In Figure 3 we also observe that indeed the first and tenth empirical per-
centiles follow a linear dependence on processing time with high accuracy. This
is suggestive that the first and tenth percentile are better filters than higher
percentiles.

In Figure 4, we show a similar plot for a typical host from dataset Wp.
First, note that the scale for this plot is in milliseconds and note that the 25th
percentile looks noisier than the 40th percentile of dataset L. This indicates
more variability in the jitter in PlanetLab measurements than in the LAN
measurements. For fine-grained measurements of response time, up to 75 per-
cent or more of Internet measurements may be unacceptably noisy. This plot
also appears to show nonparallel percentile contours. This is only an artifact
caused by the non-uniform spacing of processing times where the 25ms and
65ms measurements are connected with a straight line.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 13

5.4 Verifying Channel Model

We summarize the jitter distribution as a single filtered value and verify our
channel model by how close the filtered measurements match the expected
linear relationship. Let I'(ri[m]...ry[ml) be a filter on the measurements
rilm]...rylm] for all m € 1... M, reducing them to a single value for each of
the processing times ¢[1]...{ M]. We verify our channel model by using a least
squares linear fit between the M different processing times and the M differ-
ent filtered response times. Under the network model, the following relation
should hold form=1... M:

I'lm] =T@im]...rylm]) =a-t{m] +b)

The least square fit will provide estimations of the clock skew a, the prop-
agation time b and the variance o2 of the estimator, giving us a measure of
confidence that the data follows a linear relationship. To this end, we compute
the unique values @ and b which minimize the average square deviation s? of
I'(rilm]...rylm)) from the linear relation. In other words:

%= si2 = % 2:(8[m])2 where §[m]=T(1[m]...rnlm]) —a-Hm] — b. (10)

Explicit formulas for @ and b are quickly derived using standard calculus.!

For our best filters, s? is very small compared to the processing time differ-
ences which leads us to accept the linear relation between processing times
and percentiles up to a small random error and validates our channel model.
Furthermore, +/s2 which we call unfiltered jitter measures the effectiveness
of a filter. The filter with the smallest unfiltered jitter is the most effective
filter—the one with the best linear fit to the channel model.

Unfiltered jitter is also suggestive of the resolution that an attacker can
distinguish. We may assume that our filtered measurement are Gaussian
distributed since the filter amounts to an averaging of independent original
observations or extracting a percentile. We can use the rule of thumb that a
Gaussian distributed sample has less than a five percent probability of being
more than 1.7 standard deviations greater than its mean. Thus a timing dif-
ference must be at least 3.4 - s to be distinguishable with a five percent false
positive and five percent false negative rate. In Section 6 we empirically mea-
sure an attacker’s resolving power based on our network trace data.

In addition to this validation of our channel model, the least square fit (10)
provides simultaneous estimates of the clock skew via @, and propagation time
via b. An estimated value & ~ 1 provides further confirmation of the channel
model (1).

1Setting = (1/M) Yptml,g=Q/M))", Tlml, tqg = (1/M)}",, tlm] - T[m] and 2= (1/M) thz[m]
we have
&=tg_t_ﬁ and b=q—at
tZ _ (L‘)Z

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 14 . S. A. Croshy et al.

Table II. Mean and Median, Among all Hosts within Each Dataset, of the Unfiltered Jitter

Dataset Wa Wg We Wp L L’
Mean unfiltered jitter (us) 11.7 141 19.0 209 2.1 0.218
Median unfiltered jitter (us) 6.5 7.2 6.7 7.4 0.050 0.046

Some care has to taken in the interpretation of 6. The least squares fit
minimizes the sum of the squares of §[m], some of which will be positive and
some negative. Therefore, we define b to be the average propagation, rather
than the minimal propagation; jitter may be negative and then the average of
&) 1s zero by definition and b ~ b.

We summarize the unfiltered jitter across each dataset in Table II by giv-
ing the average and median unfiltered jitter. Across all of the datasets, the
mean unfiltered jitter is noticeably larger than the median unfiltered jitter, in-
dicating that although many hosts have low unfiltered jitter, some are much
worse. For example, we created dataset L’ based on dataset L, with one out-
lier removed. The outlier is a host on the other side of a “traffic shaper” which
introduced a significant amount of jitter.

In summary, we accept a small value of s? as a validation of the channel
model and accept the estimated clock skew & to be the true skew a. In statis-
tical terms, this procedure is called a model fitting. We do not overfit as we
estimate at most two parameters from M = 46 different response times.

We also determine if the estimator error remains the same across all
processing times. In Figure 5, we plot the difference from the best-matching
percentile filter and the actual measurement percentiles for various processing
times on a logarithmic scale. We refer to these plots as deviation contours as
they emphasize the residual noise in that could not be filtered. Observe the
lack of a trend for small percentile values, where the absolute estimator error
remains about the same across all processing times. This figure also presents
larger quantiles from the same host showing significantly more random vari-
ation with short processing times but less variation in the measurements for
the longer processing times. The jitter distribution is not the same across all
processing times for this host.

Some hosts follow the channel model and have the same jitter distribution
across all processing times, as we would expect. Other hosts violate the chan-
nel model, including those using an Intel Gigabit Ethernet NIC or an Intel
Pentium 4 CPU (See Sections 5.7 and 5.8). For those, our analysis still finds
the best filter, although the resolution of the filtering process may be limited.

5.5 Effectiveness of Filtering among Quantiles

Intuition says that minimum response time should be the ideal filter because
network devices can only introduce additional variable latency. Therefore, the
minimum response time should have the least noise introduced. In our exper-
iments to identify the filter with the lowest unfiltered jitter we found filters
significantly more effective than using the minimum response time, contra-
dicting this intuition.

To better understand this, we examined the relationship between per-
centiles and the resultant unfiltered jitter. In Figure 6 we plot the unfiltered

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 15

350

Dataset W,
Dataset Wg ------
300 Dataset W -
Dataset Wg

250

200

150

100 ook

Unfiltered jitter (microseconds)

50

0
0.001 0.01 0.1 1
Percentile

Fig. 6. Unfiltered jitter as a function of filter percentile over PlanetLab.

Dataset L ——
Crossover cable -----
Etherfast Switch --------

Unfiltered jitter (microseconds)
o

0 —
0.001 0.01 0.1 1 10
Percentile

Fig. 7. Unfiltered jitter as a function of filter percentile over the LAN.

jitter for 150 different percentile filters ranging from .001th percentile to 70th
percentile, averaged across all hosts in their respective datasets. As expected,
percentiles over 10 percent were very noisy. Every dataset shows a trend indi-
cating a higher noise as the percentile declines from the first percentile toward
the Oth percentile or minimum response time. These curves show several lo-
cal minima and demonstrate that using the minimum response time leads to
several times the error of using the empirically best filter.

To examine this further, we performed separate experiments using a an lap-
top and desktop computer connected with either a crossover cable or a network
switch. All hosts and the switch were idle during the experiment. Figure 7
plots the unfiltered jitter as the percentile changes for dataset L as well as the
dataset using the switch and crossover cable. We note all three curves have
at least two local minima that are not at the Oth percentile. For a switch and
a crossover cable, the lowest unfiltered jitter is the 0.9th percentile and 12th
percentile, respectively. These results confirm that minimum response time
is not an accurate filter and that the ideal percentile filter can be difficult to
predict a priori.

5.6 Unfiltered Jitter Versus Network Distance

In Figure 8, we show scatter plots of network distance, as measured in the
propagation delay of the best linear fit, versus the lowest unfiltered jitter for

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 16 . S. A. Croshy et al.

100 T T
Dataset W,

90 Dataset Wg
Dataset W¢
80 Dataset Wy

OXX+

70
60

50

40

30

Unfiltered jitter (microseconds)

20

10

0

100 150 200 250 300
Distance from server (milliseconds)

Fig. 8. Scatter plot of unfiltered jitter versus network distance for each host in our PlanetLab
datasets.

that host, for each PlanetLab host in our experiment. Each dot on these plots
corresponds to the results of doing a least-squares linear fit on the filtered
measurements for one host. This plot shows how network round trip times
correlate with measurement accuracy.

The largest cluster of hosts in the bottom left reflects the large number of
PlanetLab hosts within the United States. Interestingly, the international
hosts, with significantly longer network latencies, do not have noticeably
higher unfiltered jitter. The host with the least unfiltered jitter in dataset W,
2us, was physically located on another continent. As such, physical distance
does not necessarily imply much about unfiltered jitter. The hosts with higher
unfiltered jitter, notably the outliers in the upper left, may reflect the lack of
data we were able to collect from some PlanetLab hosts before they failed (see
Section 3.2).

We omit similar figures for dataset L, our LAN measurements. Most hosts
were only connected by switches with no router hops and had 50ns of unfiltered
jitter. We had one outlier host with 3.5us of unfiltered jitter, which was behind
a traffic shaping box.

For dataset Wp, we additionally measured the number of hops from the lo-
cal system to each PlanetLab host used in the experiment. This allows us to
determine whether the number of hops, rather than the latency, influences the
unfiltered jitter. Figure 9 plots the unfiltered jitter versus the network hop
count for hosts that had at least 10k measurements and a successful tracer-
oute. One PlanetLab host located two hops away on the LAN had twice the
unfiltered jitter of the best host, located 24 hops away. This plot also shows no
correlation between hopcount and unfiltered jitter.

5.7 CPU Dependencies

During the course of our experiments we observed unusual behavior when the
delay being measured was less than 100us. In that configuration, we happened
to use a Intel Pentium 4 laptop as the measuring host. Figure 10 demon-
strates this problem. Thirty-five percent of the samples with a processing time
between 100ns and 80us take a constant time to return, regardless of the

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 17

35

30

25

20

Unfiltered jitter (microseconds)

XPX
o X X
€ X X1 wx
5 ?@%%%"%é » ng

i
0 5 10 15 20 25
Distance from server (hops)

Fig. 9. Scatter plot of unfiltered jitter versus network hop count for 80 hosts in dataset Wp that
replied to at least 10k measurements.

350 1%

Response time (microseconds)

0 50 100 150 200
Server processing time (microseconds)

Fig. 10. Response time percentiles as a function of processing time for a Intel Pentium 4 laptop
measurement host and AMD Athlon target on a crossover cable.

actual processing time. We initially suspected this was an artifact of a router
or switch. In fact, the culprit was the CPU itself.

To confirm that, indeed, the Intel Pentium 4 CPU was the source of the
problem, we performed 12 timing measurements between four different com-
puters (two models of Intel Pentium 3, a Intel Pentium 4 desktop CPU and an
AMD Athlon 1GHz). In these measurements, the artifact occurred only when
the Pentium 4 desktop CPU was used in the client host and occurred nowhere
else.

Our original Intel Pentium 4 laptop (a 1.8GHz Pentium 4-M) and the new
Intel Pentium 4 desktop (a 3.06GHz Pentium 4) have entirely different moth-
erboards, Ethernet devices, and so forth. We conjecture that the artifact may
be a consequence of the Pentium 4’s power management, putting the computer
to sleep at inopportune moments. While a more detailed study of this effect is
beyond the scope of this article, prospective attackers will certainly select and
profile their timing host to ensure these artifacts do not occur.

5.8 Network Card Dependencies

We performed a further experiment to characterize how the choice of network-
ing card (or NIC) might impact unfiltered jitter. We ran a new experiment

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 18 . S. A. Croshy et al.

Table III. Unfiltered Jitter Differences Between Networking Cards

Sender Receiver IRQ Unfiltered
Experiment NIC NIC Coalescing Connection | Measurements Jitter
Ly Intel Intel default switch 150k 1419ns
Lp Intel Intel disabled switch 100k 676ns
L¢ Onboard Onboard n/a crossover 100k 56ns
Lp Onboard Onboard n/a switch 100k 49ns

Deviation (microseconds)

1 10 100 1000 10000 100000 1e+06 1e+07
Server processing time (nanoseconds)

Fig. 11. Deviation contours from ideal straight line for dataset L 4, using an Intel gigabit NIC.

between two machines that each had two networking cards. Both machines
had a 2.1GHz AMD Athlon CPU and an Intel 82540EM gigabit ethernet
controller. Machine A acted as the sender and has an onboard Via VT6102
100baseT ethernet controller. Machine B acted as the receiver and has an on-
board 3c¢905C-TX/TX-M 100baseT ethernet controller. We connected these ma-
chines with either a crossover cable or a generic SpeedStream SS2108 10/100
baseT switch.

Table ITI summarizes our results on four new datasets where we collected
up to 150k measurements for 60 processing times ranging from 1ns to 6.5ms on
a 100baseT ethernet network. We found that the higher performance gigabit
card, with interrupt coalescing enabled, had 30 times the unfiltered jitter than
the generic onboard ethernet card.

There is a caveat to these results. Datasets L4 and L g violate our network
model because their jitter distribution is very different across different process-
ing times. Figure 11 shows the deviation contours for the host in dataset L4
and demonstrates the variability in the jitter distribution. These results indi-
cate that some modern high performance servers, with high performance NICs,
may be safer from remote timing attacks as a direct consequence of their per-
formance features.

6. SIMULATING ATTACKS

A statistical analysis of unfiltered jitter is useful in that it identifies the lower
bound of noise in the system and indicates what resolution is theoretically
distinguishable. In this section, we simulate an attacker performing a timing
attack and evaluate the empirical resolution that a real attacker could identify.
In statistical terminology this amounts to performing a Aypothesis test.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 19

In hypothesis testing, the statistician tries to show that their observations
are statistically significant enough to exclude the default or null hypothesis.
As our measurement dataset contains millions of measurements of “ground
truth,” where we know the actual processing time, we may evaluate the empir-
ical effectiveness of different hypothesis testing approaches an attacker may
attempt. Our choices of which approaches we try are guided by the results in
the last section, where we determined that the mean, median, and measure-
ments above the 10-20th percentile are extremely noisy.

We show and test a framework of statistical hypothesis testing to determine
how fine a time difference A might be detectable within a reasonable number
of measurements, both for LAN and Internet attackers. We find that, with
as few as 2000 measurements, it is possible for an attacker to distinguish a
100ns processing-time difference on a LAN with false negative and false posi-
tive rates under five percent.

6.1 Classic Hypothesis Testing

Many hypothesis testing approaches that distinguish whether two measure-
ments sets U and V are from the same distribution or different distribution,
such as the Student’s ¢-test, use a test statistic ¢, computed from the summary
statistics of U and V such as the mean, standard deviation, and the sample
count. If ¢ exceeds a statistically significant threshold, then the null hypothe-
sis, that U and V are from the same distribution, is rejected.

Of course, any such analysis of hypothesis testing with a single threshold
incurs a chance of two types of errors: false positives, when we improperly
reject the null hypothesis, and false negatives, when we fail to reject the null
hypothesis when we should.

6.2 Empirical Hypothesis Testing

In our scenario, we are not limited to computing the theoretical effectiveness
of a hypothesis test because our datasets contain ground truth. We may sim-
ulate an attacker performing empirical hypothesis tests and directly rate the
attacker’s effectiveness. Rather than collect a new dataset for hypothesis test-
ing, we reuse our previously-collected raw measurements, as analyzed in the
previous section.

Our simulated attacks follow this procedure: the hypothesis test H is given
two sets of N samples of response times X =r[il, ... ryliland Y =r{[Jj], ... rylJ]
corresponding to processing times #[i] and ¢ j] which may or may not differ by
A. For any given host pair and A we wish to discriminate, we can randomly
choose data from our network measurements r,[m] to populate X, Y. We let the
null hypothesis be that A = 0, that is, that X, Y are from the same distribution.
We then perform the hypothesis test H(X, Y). To accept the null means that H
believes that X, Y are from the same distribution and to reject the null means
that H believes it has sufficient evidence that the X,Y are in fact different
distributions.

We use the same testing procedure for each hypothesis test to compute the
empirical false positive (FP) and false negative (FN) rate for each host pair

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 20 . S. A. Croshy et al.

and A. To compute the false negative rate, we perform 200 trials where we
populate the queries X, Y from different distributions (¢[j] = #[i] + A) and count
how many times the hypothesis test mistakenly accepts the null. To compute
the false positive rate, we perform 200 trials populating the queries X, Y from
the same distribution (¢[i] = #[j]) and count how many times the test mistakenly
rejects the null. We summarize these measurements by computing, for each
host in question, the smallest A with a FN and FP rate below five percent
and denote this as empirical resolution. If the hypothesis test H, includes
parameters p, we find the ideal parameters by brute force. We try H with
all choices and keep the best-performing instance. This simulates a best-case
attacker that has an oracle that helps it choose optimal parameters.

6.3 Hypothesis Testing Approaches

We considered four different statistical hypothesis testing approaches:

(1) Students t-test or other parametric approaches. A parametric statistical

approach such as the ¢-test assumes the distribution of the jitter follows a
parameterized distribution (e.g., Gaussian, exponential, etc.) and we need
only compute parameters of the fit such as the mean and variance. Doing
so allows us to design stronger estimation procedures which exploit the
assumed structure. However, it also requires us to perform a goodness-of-
fit test, to see whether the model is appropriate.
We considered attempting the #-test on our raw measurements. We re-
jected it and other parametric approaches because our sample mean, me-
dian, variance, and upper percentiles have high variability, precluding
most parametric models as they would be rejected in a goodness-of-fit test.
An inference made on the basis of a poor model would be unlikely to be
accurate.

(2) The Wilcoxian Rank-sum. The Wilcoxian rank-sum test (also called the
Mann-Whitney rank sum test) is a standard nonparametric test to deter-
mine if two sets of observations come from the same distribution. It works
well, even if the distributions are non-Gaussian, so long as they repre-
sented shifted copies of each other. Following our hypothesis test proce-
dure to determine the false positive and false negative rates, we found this
methodology significantly underperformed our “box test.”

(8) Modified Students t-test. Our raw measurements have a very skewed, non-

Gaussian distribution. We model an attacker who runs the ¢-test upon
filtered measurements instead of the raw measurements.
The modified t-test we apply is parameterized by a filter I and a threshold
T. We test each of 19 well-performing filters and 12 thresholds. As before,
we start with two sets of N samples of response times X,Y. For each of
200 random subsets of size N/10 from the N measurements in X,Y, we
apply the filter I'. We estimate the variance and means of I'(X), I'(Y) from
these 200 sampled random subsets and apply the standard ¢-test with a
threshold of T on the ¢-statistic.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 21

Following our testing procedure for hypothesis tests to determine the false
positive and false negative rates, we found that this test had half of the
resolution of our “box test.”

(4) The “Box Test.” This is our best-performing test. This test exploits our
observation that smaller quantiles in our measurements have less noise.
Given a measurement set U and two quantiles i, j, we define an interval
[¢:(U), g (U)]. The test rejects the null if the intervals induced by those
quantiles are non-overlapping and in the proper order. Details on this test
appear below.

6.4 The Box Test

Our box test is designed to exploit our observation that small percentiles have
the least noise. We also argue for this filter design based on its simplicity?.
The box test is parameterized by two quantiles i, j and, as before, we start with
two random subsets X, Y of N measurements.

To perform this test, X,Y are sorted and two intervals are formed:
[¢:/(X), g AX)] and [§:(Y), G (Y)]. The test accepts if the intervals [§;(X), § (X)]
[¢:(Y). ¢ (Y)] do not overlap and [§;(X), ¢ (X)] is before [§;(Y), G (Y)]. We calcu-
lated the false positive and false negative rates by following our testing proce-
dure for hypothesis tests.

Since we cannot a priori know which values for the parameters i, j create
the most effective statistical test, we perform this experiment for 12,000 i, j
pairs, keeping whichever pair i, j has the lowest FN rate while also having a
FP rate below five percent. From our measurements, the lower quantiles are
the statistically most reliable part of the distribution. Our exhaustive search
for optimum parameters chose i, j < 6% for over half of the hosts. Although
a real attacker would not have such an oracle against an unknown target, an
attacker could always perform measurements similar to ours against a known
machine, hopefully near the target. Also, we prefer to state an upper bound on
the capabilities of an attacker.

Figures 12 and 13 demonstrate the typical behavior we observe, where the
false negative rate suddenly increases when the time difference is too small to
be reliably distinguished. We illustrate with two hosts selected from datasets
L and four hosts selected from Wp. Data for other hosts and other datasets
reflects a similar pattern: the FN rate remains high until the time difference
increases past a critical threshold, at which time the FN rate drops quickly to
zero and the discriminator is exceptionally accurate.

Rather than showing similar scatter plots containing every host that we
measured, we summarize our measurements by computing, for each host in
question, the smallest A which we can discriminate with a FN rate below five
percent. We call this the empirical resolution. We find that LAN hosts can
accurately resolve a A in the hundreds of nanoseconds, and that PlanetLab
hosts can resolve A’s around 100us, with the best hosts resolving A ~ 30us.

2¢Complicated computations do not guarantee a valid statistical analysis. Always start ...with a
careful examination of the data.” [Moore and McCabe 2004]

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 22 . S. A. Croshy et al.

1

+ 20° ey ©
08 * o.m

0.6

H

0.4

False negative rate

..
[
L]
+ o

P

0.1 0 100 1000 10000
Time difference (microseconds)

Fig. 12. Scatter plot of the time difference versus the FN rate for two dataset L hosts. Each
dot represents the average success rate over 200 trials, each of which simulates 500 network
measurements.

ST
i e
3

0.8

t+

0.6

i)
5] Dde@éjm@Dﬂgt‘qﬁﬁltl%

False negative rate

a.le
0.4 g% .
0O o
oo o+
[m] r)
02 e
o [m] § °
o +O" g
0 = eer o —
0.1 1 10 100 1000 10000

Time difference (microseconds)

Fig. 13. Scatter plot of the time difference versus the FN rate for four dataset Wp hosts. Each
dot represents the average success rate over 200 trials, each of which simulates 500 network
measurements.

So far, we have modeled the empirical resolution of an attacker performing
500 measurements. To see how additional measurements would increase the
attacker’s abilities, we varied the number of simulated measurements from 10
to 10,000. We summarize the histogram over each of the 124 hosts in dataset
Wp by its 5 quartiles (Oth, 25th, 50th, 75th and 100th percentile), and plot
those with respect to the simulated measurement count in Figure 14.

As expected, increasing the number of queries radically improves the em-
pirical resolution. Where the best dataset Wp host, with 500 measurements,
could resolve A = 50us with fewer than five percent FP and FN rate, with
10,000 queries 31 hosts could resolve A < 35us with a fewer than five percent
FP and FN rate. Empirical resolution improves for all other hosts as well.
We can also see that the network location of an attacker can make a signifi-
cant difference. The top 25 percent hosts can resolve a difference three times
smaller than the bottom 25 percent hosts, regardless of the number of sam-
ples. This implies that an Internet attacker will do much better if many ma-
chines are available, allowing the best positioned machine to be used for attack
measurements.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 23

1e+07

1e+06

100000

10000

Worst

1000 F Third Quartile

Median

First Quartile -

Best -

10 100 1000 10000
Number of Samples

Empirical resolution (nanoseconds)

100

Fig. 14. Empirical resolution on dataset Wp as a function of the sample count.

1e+07

' Worst ——
Third Quartile -----
Median

§ 1e+06 First Quartile
g Al Best ———-
3
o
@?
o
2
©
£
c i
S
El |
o
?
jd N
K N
L2 i
g i N
€ B SN =
i ~. 5 eI
NS
\
100 S
10 100 1000 10000

Number of Samples

Fig. 15. Empirical resolution on the local network (Dataset L) as a function of the sample count.

Figure 15 shows the same simulation performed over our eight LAN hosts.
Unfortunately, we did not sample enough discrete processing times below
100ns to directly compute the empirical resolution for these small time steps.
However, we can observe a similar improvement in the empirical resolution
of LAN hosts as they measure more timing samples. It is reasonable to ex-
pect that a LAN attacker making 10,000 queries might accurately resolve
A < 50ns.

6.5 Attack Applications

While most of this article has focused abstractly on the empirical resolution of
an attacker to discriminate remote processing times, it is important to consider
the processing times of common operations that an attacker might wish to
attack.

Brumley and Boneh’s attack on SSL exploits a timing difference that is
a function of the RSA private key and the message being exponentiated
[Brumley and Boneh 2004]. Their attack creates two sets of inputs that on
average have a difference. Depending on the particular input taken from those
sets, the actual difference will vary. Many samples may need to be averaged
together. As a result, our techniques do not directly let us infer the feasibility
of their attack, but can be used to identify effective filtering strategies.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 24 . S. A. Croshy et al.

First quartile Dataset Wp, discriminator accuracy —+—
Best Dataset Wy, discriminator accuracy ---=--- q
Best Dataset L discrimination accuracy ---#--
Apache 30-client trace ~—a--
Apache 1-client trace —-=— -
Apache idle ---o--

1e+07

1e+06

100000

10000 Frmg

Jitter (nanoseconds)
8

1000 Fomgy

100

10 100 1000 10000
Number of samples

Fig. 16. Unfiltered application jitter induced by a loaded Apache Web server compared to empir-
ical resolution from our local (L) and PlanetLab (D) measurements.

We tested their attack and found that on a 1.8GHz Athlon, it depends on
timing differences of about 30,000 clock cycles (16us). From Figure 15, we can
estimate that the attack should succeed on any host within our LAN with a few
hundred measurements. By plotting a comparable histogram (omitted here),
we estimate that four hosts in dataset Wp could perform the attack with fewer
than 10,000 measurements for each bit of RSA key, while others would require
significantly more. Brumley and Boneh found their attack did not work over
the Internet, but our results suggest that an attacker with access to enough
machines, across the Internet, might well have one that works.

6.6 Application Jitter

Our analysis of network jitter used a custom application on an unloaded server.
Servers, like the network, can introduce latency when under load. A realistic
application might introduce its own jitter into the response time because of
cache misses, page faults, TLB faults, lock contention and other sources. To
characterize such jitter and the ability to filter it, we analyzed the Apache web
server, version 1.3.33, both under no load and under two trace-driven loads
with a 1.1GB working set (larger than system RAM, guaranteeing pressure
on the disk system). For simplicity, the load generation clients ran on the
same computer as the HTTP server. One run was performed with sequential
requests and another run was performed with 30 concurrent requests. The
CPU was saturated during both runs.

Measurements were taken by a custom HTTP client, on a separate system,
requesting a small file over an unloaded LAN. We collected 100,000 measure-
ments over the three different workloads. As an attacker would do, our client
avoids connection startup jitter by first sending only part of the HTTP request,
then deliberately delaying to ensure that it is received and processed by the
server before it sends the remaining part of the request.

In Figure 16, we graph the unfiltered application jitter as a function of the
number of request samples. We estimate the application jitter as the standard
deviation of the lowest variance quantile filter, with the variance calculated
by choosing 10,000 random subsets of n measurements, filtering them using
a quantile filter ¢;, and computing the variance of the empirical quantile §;
across all 10k subsets.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 25

We also plot quartiles of empirical resolution from Figures 14 and 15 from
Dataset L and D trials for comparison. We can see that a realistic application
like Apache introduces only a microsecond of jitter at 1000 samples even when
highly loaded, and less jitter than the local network when unloaded.

There are a wide variety of different ways to architect a server. Our goal ex-
amining in Apache is to identify how effectively the jitter could be filtered from
one sample real world application. Of course, different application structures,
on different operating systems, and on different hardware may yield more or
less jitter.

7. RELATED WORK

7.1 Side Channel Attacks

The timing attacks discussed in this article are an example of side channel
attacks, where a system leaks information due to its physical implementation.
An early example of such an attack is the password authentication weakness
discovered in the Tenex operating system [Lampson 1983]. Kocher was the
first to observe that side-channels attacks could generally be applied against
common cryptographic algorithms. His analysis using device response times
[Kocher 1996] and power consumption [Kocher et al. 1999] to derive crypto-
graphic secrets were the basis for much of the recent work in this field. In the
recent Advanced Encryption Standard (AES) competition, the ciphers were ex-
amined for the potential of side-channel attacks [Daemen and Rijmen 1999].

Side channels exist where a computer may leak its internal state through
RF emissions [Kuhn and Anderson 1998]. Strikingly, methods as effortless as
watching reflections of displays, at a distance, may allow an observer to see the
screen [Kuhn 2002; Backes et al. 2008]. Side channels have been used to detect
passwords over SSH, through the use of keystroke timing [Song et al. 2001].
Aciigcmez and Cetin Kaya Ko¢ [2006] presents an attack on AES that exploits a
side channel when an attacker can see the stream of individual cache hits and
misses.

Timing attacks have been applied to cryptosystems. Kelsey et al. [2000]
conjectured that cache miss behavior may also be used as a side channel. Page
[2002] later presented an analysis of caching behavior and described an attack
against DES. Bernstein [2005] showed that AES’s CPU cache-miss behavior
leaks key bits. A more powerful attack on AES exploiting shared cache state
has been done by Osvik et al. [2006]. Silverman and Whyte [2007] summarize
a timing attack on the NTRU cryptosystem that exploits a timing difference
on the number of SHA-1 computations. Schindler [2000] described an attack
against the chinese remainder theorem in RSA and Schindler [2002] modeled
and optimized attacks against RSA. The Brumley and Boneh [2004] attack on
RSA was improved by Aciigmez et al. [2005].

More recently, work has been done showing a side channel from a shared
branch predictor or trace cache that leaks the execution path taken by a
program and permitting attacks on cryptosystems [Aciicmez et al. 2007c].
Aciicmez et al. [2007a] show a local attack on RSA that exploit branch mis-
predictions delays in order to determine the secret key. Aciicmez et al. [2007b]

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 26 . S. A. Croshy et al.

present an interprocess timing attack over the loopback interface on AES that
exploits CPU cache timing differences using about 10'! encryptions and were
able to distinguish the correct AES key among 2'2 alternatives.

Timing attacks have been applied to the Internet. Kohno et al. [2005]
showed that it is possible to fingerprint a host on the Internet by using TCP or
ICMP timestamps to measure differences between machine clock skews as tiny
as 1us per second. Felten and Schneider [2000] shows how servers can finger-
print anonymous web clients through detecting the timing difference between
a client cache hits and misses. And, Bortz et al. [2007] showed that timing dif-
ference may leak secrets such as the existence of an account or shopping cart
size in Web applications.

7.2 Network Measurement

There have been many attempts to characterize the end-to-end behavior of the
Internet. The most comprehensive work is Paxson’s measurements and analy-
sis of Internet end-to-end dynamics [Paxson 1997a,b]. Paxson characterized
such issues as routing pathologies (e.g., routing loops), outages, flutter, and
the stability and lifetime of routing information. He also examined Internet
packet dynamics, including the effects of packet loss, corruption, and reorder-
ing on TCP.

The earliest studies of network latency and jitter focused on these attributes
because of their effect on important parameters in the TCP protocol. An accu-
rate value for the round trip time is needed to estimate the correct values for
TCP retransmit timers and window size [Claffy et al. 1993]. If jitter causes the
round trip time to be incorrectly measured, the TCP protocol may incorrectly
initialize its timers.

Internet path delay time was characterized as a shifted gamma distribu-
tion in Mukherjee [1994]. His measurements used standard ICMP echo re-
quests, and achieved millisecond precision. Many other researchers have per-
formed end-to-end assessments of Internet packet behavior [Acharya and Saltz
1996; Bolot 1993; Sanghi et al. 1993; Wang et al. 2003]. Barford and Crovella
[2001] characterized causes of delay and jitter in a Web server scenario. Casner
et al. [2001] measured Internet jitter to 20us resolution on a wide area back-
bone network to study the feasibility of using backbone IP networks as virtual
circuits.

Generally, these studies were concerned with millisecond-scale events, and
did not consider the notion of an attacker willing to make thousands or even
millions of repeated queries in order to gain increased timing accuracy of a
remote machine’s processing time.

7.3 Clock Synchronization

Clock synchronization and remote timing attacks must both handle Internet
jitter and delay. Unlike clock synchronization algorithms, an attacker only
needs to worry about the stability of one clock—their own, and over a timescale
of minutes. The attacker can also afford to collect many measurements.

The Network Time Protocol [Mills 1991, 1992] is designed to synchronize
the system clocks of computers over the network. NTP must, by necessity,

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 27

measure and compensate for network latency and jitter, but its goals are to
achieve millisecond, not submicrosecond accuracy.

Many types of network measurement depend more upon low clock skew
variation across the measurements hosts than offsets from real time [Paxson
1998]. Protocols other than NTP have been designed to minimize clock skew
[Pasztor and Veitch 2002; Veitch et al. 2004].

8. CONCLUSION

This article studied the scope and potential of performing a remote timing at-
tack, both on a LAN and across the Internet. Any such attack will require
making multiple timing measurements of an event on a remote server and fil-
tering those measurements to eliminate noise that might be induced by the
network or by the end hosts. We have shown that, even though the Internet
induces significant timing jitter, we can reliably distinguish remote timing dif-
ferences as low as 20us. A LAN environment has lower timing jitter, allowing
us to reliably distinguish remote timing differences as small as 100ns (possibly
even smaller). These precise timing differences can be distinguished with only
hundreds or possibly thousands of measurements.

Good filtering of those measurements is fundamental to mounting a success-
ful attack. Contrary to conventional wisdom, using either the median response
time or the minimum response time observed as a filter significantly under-
performs filters that sort the data and look at values early in the range (e.g.,
one percent into the sorted list). Based on filters that use these low percentiles,
we can construct a “box test” that can reliably distinguish small timing differ-
ences, when they are present, with low false positive and low false negative
rates.

We also observed, generally, that the round trip time or network hop count
did not significantly contribute to the network jitter, and thus network dis-
tance may not confer immunity to remote timing attacks. We found that the
choice CPU or networking card may introduce more jitter than a local area
network. Prospective attackers can work around this by benchmarking their
measurement machines, in advance.

If an attacker can accurately perform timing measurements, then a num-
ber of cryptographic or algorithmic weaknesses in a server might leak crit-
ical information to the attacker. As a consequence, we recommend that the
algorithms used inside web and other Internet servers that process important
secrets be carefully audited and, where necessary, be modified to limit observ-
able differences in execution times to at most a few microseconds.

REFERENCES

ACHARYA, A. AND SALTZ, J. 1996. A study of Internet round-trip delay. Tech. rep. CS-TR-3736,
Department of Computer Science, University of Maryland.

ACIICMEZ, O. AND CETIN KAYA KOC. 2006. Trace-driven cache attacks on aes (short paper). In
Proceedings of the 8th International Conference on Information and Communications Security
(ICS’06). Raleigh, NC, 112-121.

ACIICMEZ, O., CETIN KAYA KOC, AND SEIFERT, J.-P. 2007a. Predicting secret keys via branch
prediction. In Proceedings of the Cryptographers’ Track at the RSA Conference (CT-RSA’07).
San Francisco, 225-242.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

17: 28 . S. A. Croshy et al.

ACIICMEZ, O., SCHINDLER, W., AND CETIN K. Ko¢. 2005. Improving brumley and boneh
timing attack on unprotected ssl implementations. In Proceedings of the 12th ACM Conference
on Computer and Communications Security (CCS’05). Alexandria, VA, 139-146.

ACIICMEZ, O., SCHINDLER, W., AND CETIN KAYA KO¢. 2007b. Cache based remote timing attack
on the AES. In Proceedings of the Cryptographers’ Track at the RSA Conference (CT-RSA’07).
San Francisco, 271-286.

ACIICMEZ, O., SEIFERT, J.-P., AND CETIN KAYA KOC. 2007c. Micro-architectural cryptanalysis.
IEEE Secur. Privacy 5, 4, 62—64.

BACKES, M., DURMUTH, M., AND UNRUH, D. 2008. Compromising reflections or how to read led
monitors around the corner. In Proceedings of the IEEE Symposium on Security and Privacy
(SP’08). Oakland, CA.

BARFORD, P. AND CROVELLA, M. 2001. Critical path analysis of TCP transactions. IEEE /ACM
Trans. Netw. 9, 3, 238-248.

BERNSTEIN, D. J. 2005. Cache-timing attacks on AES. http:/cr.yp.to/papers.html#cachetiming.

BoLoT, J.-C. 1993. End-to-end packet delay and loss behavior in the Internet. In Proceedings of
the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’93). San Francisco, CA, 289-298.

BoORTZ, A., BONEH, D., AND NANDY, P. 2007. Exposing private information by timing web
applications. In Proceedings of the 16th International World Wide Web Conference (WWW’07)
Banff, Alberta, Canada.

BRUMLEY, D. AND BONEH, D. 2004. Remote timing attacks are practical. In Proceedings of the
12th USENIX Security Symposium (SECURITY’04). Washington, DC.

CANVEL, B., HILTGEN, A., VUAGNOUX, M., AND VAUDENAY, S. 2003. Password interception
in a TLS/SSL channel. In Proceedings of the Annual International Cryptology Conference
(CRYPTO’03). Lecture Notes in Computer Science, vol. 2729. Springer-Verlag, 583—-599.

CARTER, J. L. AND WEGMAN, M. N. 1979. Universal classes of hash functions. J Comput. Syst.
Sci. 18, 2, 143-154.

CASNER, S., ALAETTINOGLU, C., AND KUAN, C.-C. 2001. A fine-grained view of high-performance
networking. NANOG22 meeting. http://www.nanog.org/mtg-0105/casner.html.

CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON, L., WAWRZONIAK, M., AND
BOWMAN, M. 2003. PlanetLab: An overlay testbed for broad-coverage services. Comput.
Comm. Rev. 33, 3.

CLAFFY, K. C., PoLyzos, G. C., AND BRAUN, H.-W. 1993. Measurement considerations for as-
sessing unidirectional latencies. Internetw.: Resear. Exper. 4, 3, 121-132.

CROSBY, S. AND WALLACH, D. S. 2003. Denial of service via algorithmic complexity attacks.
In Proceedings of the 12th USENIX Security Symposium (SECURITY03).

DAEMEN, J. AND RIJMEN, V. 1999. Resistance against implementation attacks: A comparative
study of the AES proposals. In Proceedings of the 2nd AES Candidate Conference (AES’99).
Rome, Italy.

FELTEN, E. W. AND SCHNEIDER, M. A. 2000. Timing attacks on Web privacy. In Proceedings of
the 7th ACM Conference on Computer and Communications Security (CCS’00). Athens, Greece.

JENKINS, R. J. 1995. Hash functions for hash table lookup.
http://burtleburtle.net/bob/hash/evahash.html.

KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. 2000. Side channel cryptanalysis of
product ciphers. J. Comput. Secur. 8, 2-3, 141-158.

KOCHER, P. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Proceedings of the Annual International Cryptology Conference (CRYPTO’96). N.
Koblitz, Ed. Lecture Notes in Computer Science, vol. 1109. Springer-Verlag, Santa Barbara, CA.

KOCHER, P., JAFFE, J., AND JUN, B. 1999. Differential power analysis. In Proceedings of the
Annual International Cryptology Conference (CRYPTO0’99). M. Wiener, Ed. Lecture Notes in
Computer Science, vol. 1666. Springer-Verlag, Santa Barbara, CA.

KoHNO, T., BROIDO, A., AND CLAFFY, K. 2005. Remote physical device fingerprinting. In
Proceedings of the IEEE Symposium on Security and Privacy (SP’05). Oakland, CA.

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

Opportunities and Limits of Remote Timing Attacks . 17: 29

KUHN, M. G. 2002. Optical time-domain eavesdropping risks of CRT displays. In Proceedings of
the IEEE Symposium on Security and Privacy (SP’02). Oakland, CA.

KUHN, M. G. AND ANDERSON, R. J. 1998. Soft Tempest: Hidden data transmission using
electromagnetic emanations. In Proceedings of the 2nd Workshop on Information Hiding (IH’98).
Portland, OR.

LAMPSON, B. W. 1983. Hints for computer system design. SIGOPS Oper. Syst. Rev. 15, 5, 33—48.
IEEE Softw. 1,1, 11-28.

MiLLs, D. L. 1991. Internet time synchronization: The Network Time Protocol. IEEE Trans.
Comm. 39, 10, 1482-1493.

MiLLs, D. L. 1992. Network time protocol (version 3). Tech. rep. RFC-1305, Internet Engineering
Task Force. ftp:/ftp.rfc-editor.org/in-notes/rfc1305.txt.

MOORE, D. AND MCCABE, G. 2004. Introduction to the Practice of Statistic, 5th Ed. Freeman,
New York.

MUKHERJEE, A. 1994. On the dynamics and significance of low frequency components of Internet
load. Internetw.: Resear. Exper. 5, 4, 163—-205.

OSVIK, D. A., SHAMIR, A., AND TROMER, E. 2006. Cache attacks and countermeasures: The case
of AES. In Proceedings of the Cryptographers’ Track at the RSA Conference (CT-RSA06). Lecture
Notes in Computer Science, vol. 3860. Springer, 1-20.

PAGE, D. 2002. Theoretical use of cache memory as a cryptanalytic side-channel. Tech. rep.
CSTR-02-003, Department of Computer Science, University of Bristol.

PASZTOR, A. AND VEITCH, D. 2002. PC based precision timing without GPS. In Proceedings of
the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’02). Marina Del Rey, CA. 1-10.

PAXSON, V. 1997a. End-to-end Internet packet dynamics. In Proceedings of the ACM
SIGCOMM: Applications, Technologies, Architectures and Protocols for Computer Communica-
tion (SIGCOMM’97). Cannes, France.

PAXSON, V. 1997b. Measurements and analysis of end-to-end Internet dynamics. Ph.D. thesis,
University of California, Berkeley.

PAXSON, V. 1998. On calibrating measurements of packet transit times. In Proceedings of the
SIGMETRICS /|PERFORMANCE: Joint International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS’98). Madison, WI. 11-21.

SANGHI, D., AGRAWALA, A. K., GUDMUNDSSON, O., AND JAIN, B. N. 1993. Experimental assess-
ment of end-to-end behavior on Internet. In Proceedings of the 12th Annual Joint Conference of
the IEEE Computer and Communications Societies (CCS’93). San Francisco, CA. 867-874.

SCHINDLER, W. 2000. A timing attack against RSA with the Chinese remainder theorem. In
Proceedings of Cryptographic Hardware and Embedded Systems. Worcester, MA. 109-124.

SCHINDLER, W. 2002. Optimized timing attacks against public key cryptosystems. Statistics
Decisions 20, 191-210.

SILVERMAN, J. H. AND WHYTE, W. 2007. Timing attacks on NTRUEncrypt based on variation
in number of hash calls. In Proceedings of the Cryptographers’ Track at the RSA Conference
(CT-RSA07). San Francisco.

SONG, D. X., WAGNER, D., AND TIAN, X. 2001. Timing analysis of keystrokes and timing attacks
on SSH. In Proceedings of the 10th USENIX Security Symposium (SECURITY’01). Washington,
DC.

VEITCH, D., BABU, S., AND PASZTOR, A. 2004. Robust synchronization of software clocks across
the Internet. In Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement.
Taormina, Sicily, Italy, 219-232.

WANG, Z., ZEITOUN, A., AND JAMIN, S. 2003. Challenges and lessons learned in measuring path
RTT for proximity-based applications. In Proceedings of the Passive and Active Measurement
Workshop (PAM’03). San Diego, CA.

Received May 2007; revised July 2008; accepted August 2008

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 17, Pub. date: January 2009.

